Modeling of subcontinuum thermal transport across semiconductor-gas interfaces
نویسندگان
چکیده
A physically rigorous computational algorithm is developed and applied to calculate subcontinuum thermal transport in structures containing semiconductor-gas interfaces. The solution is based on a finite volume discretization of the Boltzmann equation for gas molecules in the gas phase and phonons in the semiconductor . A partial equilibrium is assumed between gas molecules and phonons at the interface of the two media, and the degree of this equilibrium is determined by the accommodation coefficients of gas molecules and phonons on either side of the interface. Energy balance is imposed to obtain a value of the interface temperature. The classic problem of temperature drop across a solid-gas interface is investigated with a simultaneous treatment of solid and gas phase properties for the first time. A range of transport regimes is studied, varying from ballistic phonon transport and free molecular flow to continuum heat transfer in both gas and solid. A reduced-order model is developed that captures the thermal resistance of the gas-solid interface. The formulation is then applied to the problem of combined gas-solid heat transfer in a two-dimensional nanoporous bed and the overall thermal resistance of the bed is characterized in terms of the governing parameters. These two examples exemplify the broad utility of the model in practical nanoscale heat transfer applications. © 2009 American Institute of Physics. DOI: 10.1063/1.3181059
منابع مشابه
Analytical model for thermal boundary conductance and equilibrium thermal accommodation coefficient at solid/gas interfaces.
We develop an analytical model for the thermal boundary conductance between a solid and a gas. By considering the thermal fluxes in the solid and the gas, we describe the transmission of energy across the solid/gas interface with diffuse mismatch theory. From the predicted thermal boundary conductances across solid/gas interfaces, the equilibrium thermal accommodation coefficient is determined ...
متن کاملN, S-Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Violet Dye
In contemporary research, “Heterostructure” assemblies play an important role in energy conversion systems, wherein the composite assemblies facilitate faster charge carrier transport across the material interfaces. The improved/enhanced efficiency metrics in these systems (electro/photo-electrochemical processes/devices) is due to synergistic interaction and synchronized charge transport a...
متن کاملFresnel transmission coefficients for thermal phonons at solid interfaces
Interfaces play an essential role in phonon-mediated heat conduction in solids, impacting applications ranging from thermoelectric waste heat recovery to heat dissipation in electronics. From a microscopic perspective, interfacial phonon transport is described by transmission and reflection coefficients, analogous to the well-known Fresnel coefficients for light. However, these coefficients hav...
متن کاملTwo-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces
We have used a two-temperature nonequilibrium molecular dynamics method for predicting interfacial thermal resistance across metal-nonmetal interfaces. This method is an extension of the conventional nonequilibrium molecular dynamics for the dielectric-dielectric interface, where a temperature bias is imposed and the heat current is derived. We have included the electron degree of freedom for t...
متن کاملPredicting the Thermal Boundary Resistance of Isolated and Closely-spaced Si/si1−xgex Interfaces with Molecular Dynamics Simulations
where ∆T and q are the temperature drop and heat flux across the interface. Predicting the thermal boundary resistance of semiconductor/semiconductor interfaces is important in devices where phonon interface scattering is a significant contributor to the overall thermal resistance (e.g., computer chips with high component density). Such predictions will also lead to improvements in the design o...
متن کامل